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Abstract
The relationship between agricultural carbon emissions and agricultural economic growth has attracted a significant research
attention. A key issue to address in the development of agriculture is the reduction of agricultural carbon emissions while main-
taining agricultural economic growth. This study investigated the interactions between agricultural carbon emissions and agricul-
tural economic growth frommultiple perspectives based on agricultural carbon emission data from 30 provinces in China measured
from 1997 to 2015. Using this dataset, the coupling and decoupling effects of agricultural carbon emissions and the underlying
driving factors were explored using a coupling development degree model, the Tapio decoupling assessment model, and a loga-
rithmic mean Divisia index (LMDI) decomposition model. The results were as follows: (1) at the regional scale, the degree of
coupling development between agricultural carbon emissions and agricultural economic growth is high in the central region of
China and low in the western region. At the provincial scale, the coupling effects of agricultural carbon emissions exhibited four
levels: minimal, low, moderate, and high coupling. (2) With the exceptions of Beijing, Zhejiang, Fujian, Guangdong, Inner
Mongolia, and Shanghai, the relationships between agricultural carbon emissions and agricultural economic growth in the other
24 provinces were in a weak decoupling state. (3) The effects of agricultural development scale and agricultural technical progress
were the major driving factors associated with increases and decreases in agricultural carbon emissions, respectively.
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Introduction

China’s rapid economic growth has resulted in high carbon
dioxide emissions that poses many risks to the ecological bal-
ance of the area (Li and Jin 2018; Liu et al. 2018). Indeed,
China has surpassed the USA as the world’s largest producer
of carbon dioxide emissions (Li et al. 2016a). In an effort to
mitigate rising carbon dioxide emissions, the Chinese

government has promised that carbon dioxide emissions per
unit GDP will be reduced to 40–45% of 2005 levels by 2020
(Li et al. 2016b). The promise reflects the determination and
confidence of the Chinese government to substantially reduce
carbon emissions and to manage economic growth responsi-
bly. As a developing country, economic development is al-
ways the primary goal for China. The 17th National
Congress of the Communist Party of China indicated that
fourfold growth of the per capita GDP in 2000 by the year
2020 was one of the country’s economic development goals
(Zhou and Li 2013). Consequently, the Chinese government
faces conflicting pressures from carbon emission reduction
and increased economic growth during the country’s current
development, and in the foreseeable future.

Transforming the pattern of economic growth is key to
resolving the conflict between growth and environmental con-
cerns. It is integral to adopt advanced carbon emission reduc-
tion measures, with particular focus on the often-overlooked
emissions of agricultural carbon. An excessive use of agricul-
tural production inputs such as chemical fertilizers and pesti-
cides results in large increases of greenhouse gas (GHG)
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emissions (Tian et al. 2015). For example, GHG emissions
from agriculture account for approximately 17% of the total
emissions of China (Lu 2013). Although the proportion of
agricultural GHG emissions is not as high as that of other
industries, emission reduction and energy conservation in ag-
riculture are still important and have a significantly positive
externality (Wu et al. 2015). A key issue to address in agricul-
tural development is reducing agricultural carbon emissions
while simultaneously developing the agricultural economy. To
accomplish a Bwin–win^ outcome with respect to the reduc-
tion of agricultural carbon emissions and the maintenance of
agricultural economic growth, it is necessary to clarify the
relationship between the two properties. In theory, a long-
term relationship between agricultural carbon emissions (en-
vironmental degradation) and agricultural economic growth
generally exhibits an inverted U-shaped curve (Liang 2017).
The curve is often referred to as an Benvironmental mountain^
(Fig. 1; Sheng et al. 2015). In the early agricultural develop-
ment phase, a large amount of GHGs are produced because
agricultural economic growth strongly relies on the consump-
tion of agricultural production inputs. During the period when
agricultural carbon emissions increase with the growth of the
agricultural economy, agricultural carbon emissions and agri-
cultural economic growth exhibit a coupling relationship.
After agricultural economic growth reaches a critical point
(inflection point A), i.e., after agricultural carbon emissions
peak, emissions continuously decline with the growth of the
agricultural economy. These variables then exhibit opposite
trends, i.e., a decoupling relationship.

With increased attention on agricultural effects on environ-
ments, numerous investigations have been conducted to assess
agricultural carbon emissions. For instance, Bell et al. (2014)
questioned the IPCC method of quantifying GHG emissions
from agricultural production and presented a new approach
that was subsequently adopted by the Scottish government.
Machado et al. (2017) estimated agricultural carbon emissions
of certain ethanol feedstocks in Brazil. Robaina-Alves and
Moutinho (2014) identified the specific effects of decomposi-
tion on the intensity of GHG emissions in agriculture for cer-
tain European countries. Further, Xu and Lin (2017) investi-
gated the forces driving CO2 emissions in China’s agriculture
sector using a geographically weighted regression model. Yan
et al. (2017) analyzed the main drivers of GHG emissions
from agriculture in 17 European countries using the
Generalized Divisia Index. Nayak et al. (2015) presented the
outcomes of a bottom-up assessment of mitigation options for
China’s agricultural sector using a meta-analysis.

The above studies of agricultural carbon emissions focused
mainly on the estimation of agricultural carbon emissions, its
driving forces, and methods of its reduction. Although
existing literature provides an important foundation for our
research, the relationship between agricultural carbon emis-
sions and agricultural economic growth is still unclear. Some

studies have investigated whether agricultural carbon emis-
sions and agricultural economic growth were compatible
using the environmental Kuznets curve (EKC) hypothesis.
For example, Managi (2006) examined the EKC hypothesis
as it pertains to pesticide use. Using the EKC theory, Yan et al.
(2014) explored the relationship between the intensity of ag-
ricultural carbon emissions and the strength of the agricultural
economy in China. The authors discovered that the EKCs of
these variables exhibited double inflection points. Vlontzos et
al. (2017) developed a synthetic Eco-(in) efficiency index and
used it to examine EKC in the EU agricultural sector. Liu et al.
(2017) explored the impact of agriculture on carbon dioxide
emissions and examined the EKC hypothesis in four
Association of Southeast Asian Nations (ASEAN) countries.
These EKC-based studies focused specifically on the effect of
agricultural economic growth on agricultural carbon emis-
sions but overlooked possible interactions between them
(Yang 2011). In addition, this model only describes the curve
relationships between agricultural carbon emissions and agri-
cultural economic growth. Thus, it is not able to identify and
classify their specific phases effectively (Liu and Cao 2017).

The term Bdecoupling^ originates from physics and indi-
cates a rift in the relationship among physical quantities that
initially have similar response relationships (Zhao et al. 2017).
Unlike the EKCmethod, which only investigates the one-way
relationship between two variables, the decoupling method
can reveal the interactions between variables. In addition, it
is also easier to understand and calculate. Consequently, the
decoupling method has become widely used to investigate the
relationships among the economy, energy use, and emissions
(Wang et al. 2017a). For example, Zhang and Wang (2013)
studied decoupling between economic growth and CO2

emissions in Jiangsu. Wang et al. (2017b) also demonstrated
a relationship between CO2 emissions and electricity
production in the Shandong province using the decoupling
method. Zhang et al. (2018) examined the decoupling rela-
tionship between coal consumption and economic growth.
Meng et al. (2018) used the decoupling index to evaluate the

Fig. 1 The environmental mountain curve
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relationship between fossil fuel consumption and industrial
outputs in China. Although numerous studies have examined
the decoupling relationship among the economy, energy use,
and emissions, there have only been a few studies that used the
decoupling method to investigate the agricultural sector (Luo
et al. 2017). Of these studies, Zhen et al. (2017a) assessed the
decoupling effect of carbon emissions from crop farming in
the Guangdong province using a decoupling model. In addi-
tion, Luo et al. (2017) investigated the decoupling of agricul-
tural carbon emissions from agricultural economic growth in
China. These investigations highlighted the interactions be-
tween agricultural carbon emissions and agricultural econom-
ic growth, but the decoupling relationship between them was
solely assessed from a single perspective. Consequently, these
studies were limited by the lack of a discussion of the coupling
relationship between emissions and growth.

In contrast with decoupling, coupling refers to the phenom-
enon by which two or more systems, or forms of motion,
interact with each other to create a joint effect (He et al.
2017). The coupling method has been widely used to assess
the relationship between agricultural emissions and growth
(Yang et al. 2017; Wang et al. 2017c). By combining the
coupling and decoupling methods, we can avoid one-sided
conclusions, and the two methods become mutually comple-
mentary. Thus, a demonstration of the coupling and decou-
pling relationships between agricultural carbon emissions and
agricultural economic growth could result in robust conclu-
sions. Here, we explored the coupling and decoupling rela-
tionships between agricultural carbon emissions and agricul-
tural economic growth in a unified framework. Moreover, we
identified the driving factors of agricultural carbon emissions
using the LMDI decomposition model. The results of this
study provide a useful supplement to the current body of lit-
erature on this topic. Further, we expect that our study will
assist in providing a more robust conclusion regarding the
relationship between agricultural carbon emissions and agri-
cultural economic growth. Our contributions are summarized
as follows: (1) we investigated CO2 emissions as a result of
agricultural land use activities, as well as CH4 gas emissions
from rice production. We further considered differences
among regions and rice varieties in determining the CH4 emis-
sion coefficients from rice production. (2) This investigation
explores the coupling and decoupling relationships between
agricultural carbon emissions and agricultural economic
growth in a unified framework. Thus, we avoid one-sided
conclusions and drawmore robust conclusions than have been
previously supposed. (3) A LMDI decomposition model was
employed at both the temporal and spatial scales to determine
the driving factors of agricultural carbon emissions in China.

The second section of the current study introduces details
of the model, methods, and sources of data. The third section
of the manuscript presents and discusses the results, while
conclusions are presented in the fourth section.

Methodology and data

Research methods

Measurement model of carbon emissions

Following Tian and Zhang (2013), the equation used to mea-
sure carbon emissions was

E ¼ ∑ Ti � δið Þ; ð1Þ

where E represents the amount of agricultural carbon emis-
sions; i represents the source of agricultural carbon emissions;
T represents the characterization data of agricultural carbon
emission sources; and δ represents the carbon emission coef-
ficient of agricultural carbon emission sources.

Many stages of the agricultural production process result in
carbon emissions. Further, agricultural carbon emissions re-
sult from diverse and complex carbon sources. We focused on
CO2 emissions as a result of agricultural resource use and
energy consumption from agricultural land use activities, as
well as CH4 gas emissions from rice production, according to
the characteristics of agricultural production and previous
studies (Tian et al. 2014b; Li et al. 2015). In addition, to render
our results more convenient, we unified measurement units by
converting CO2 and CH4 emissions to standard C equivalents
(C; described below). According to the fourth assessment re-
port of the Intergovernmental Panel on Climate Change (IPCC
2007), the greenhouse effects produced by 1 ton of CO2 and
CH4 are equivalent to those produced by 0.2727 and
6.8175 tons of C, respectively.

GHG emissions are generated during agricultural land use
activities, the use of agricultural materials, and consumption
of agricultural energy, in addition to other processes.
According to Li et al. (2011) and Tian et al. (2012), the carbon
emissions of agricultural land activities mainly result from (1)
the production and use of fertilizers, pesticides, agricultural
plastic sheets, and agricultural diesel oil; (2) destruction of
the soil organic carbon pool by agricultural plowing; and (3)
consumption of fossil fuel for electricity in agricultural irriga-
tion (i.e., indirect carbon emissions). A comprehensive list of
emission coefficients for various carbon sources and their as-
sociated references is shown in Table 1.

Rice fields are a major source of CH4 emissions, and China
is both a major producer and consumer of rice. The CH4

emissions from rice fields have a considerable effect on the
global atmosphere, and thus, a scientific measurement of CH4

emissions from rice fields is essential. The CH4 emissions
resulting from different rice varieties or different rice fields
vary. Therefore, the determination of CH4 emission
coefficients should consider differences in regions and rice
varieties. Min and Hu (2012) measured the CH4 emission
coefficients of different rice varieties from different regions.

25282 Environ Sci Pollut Res (2018) 25:25280–25293
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Considering the above, we converted CH4 emission coeffi-
cients to C emission coefficients and present the C emission
coefficients of early season rice, late season rice, and in-season
rice from different Chinese provinces (Table 2).

Coupling development degree model

We explored the coupling effect between agricultural carbon
emissions and agricultural economic growth using a coupling
development degree model. To analyze the coupling relation-
ship between agricultural carbon emissions and agricultural
economic growth, we constructed an evaluation model based
on previous studies (Tang 2015; Wang et al. 2017c) that as-
sesses the coupling relationship between the two properties:

CP ¼ G
0 � E

0

G
0þE

0

2

� �2

0
B@

1
CA

k

ð2Þ

Here, CP is the degree of coupling and is a description and
measurement of the coupling relationship between agricultur-
al carbon emissions and agricultural economic growth; G' is
the standardized output value of farming and indicates agri-
cultural economic growth; E' represents standardized agricul-
tural carbon emissions; and k is the adjustment coefficient that
is mainly used to increase the degree of discrimination of
coupling (k ≥ 2) (Li et al. 2012). According to He et al.
(2017) and Yang et al. (2017), we used a k = 2, because the
degree of coupling can be discriminated well when k = 2.

Although CP can reveal the degree of interaction between
agricultural carbon emissions and agricultural economic
growth to a certain extent, it cannot reflect their overall level
of interaction. Thus, we revised the coupling evaluationmodel
as follows:

T ¼ αG
0 þ βE

0

CP
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � CP

p
�

ð3Þ

Here, T is the index of comprehensive development of ag-
ricultural carbon emissions and agricultural economic growth
and reflects the overall level of agricultural carbon emissions

and agricultural economic growth; α and β are the parameters
to be determined and reflect the relative importance of agri-
cultural carbon emissions and agricultural economic growth,
and we used the following assumption: α = β = 0.51; CP' is the
degree of coupling development and comprehensively reflects
the degree of interaction between agricultural carbon emis-
sions and agricultural economic growth, in addition to the
overall developmental level of both. The other variables rep-
resent the same metrics as in Eq. (2).

The coupling development degree, CP' ∈ [0, 1], where
greater values indicate higher degrees of coupling between
agricultural carbon emissions and agricultural economic
growth. Conversely, lower values indicate lower degrees of
coupling. To comprehensively analyze the coupling relation-
ship between agricultural carbon emissions and agricultural
economic growth, this paper follows previous studies (Liu et
al. 2015). Using the median segmentation method, 0.3, 0.5,
and 0.8 were used as classification thresholds. The degree of
coupling development between agricultural carbon emissions
and agricultural economic growth is divided into four levels:
minimal (0 ≤ CP' < 0.3), low (0.3 ≤ CP' < 0.5), moderate
(0.5 ≤CP' < 0.8), and high (0.8 ≤CP' ≤ 1) coupling.

The Tapio decoupling assessment model

We used the Tapio decoupling assessment model to assess the
decoupling relationships between agricultural carbon emis-
sions and agricultural economic growth in selected provinces
(Tapio 2005):

t ¼ %ΔE
%ΔG

¼ Eend−Estartð Þ=Estart

Gend−Gstartð Þ=Gstart
; ð4Þ

where t represents the Tapio decoupling index between agri-
cultural carbon emissions and agricultural economic growth;
%ΔG and %ΔE represent the rates of change for agricultural
output values and the amount of agricultural carbon emis-
sions, respectively; Estart and Eend represent the agricultural
carbon emissions in the initial and final year of a research
period, respectively; and Gstart and Gend represent the agricul-
tural output values of the initial and final year of a research
period, respectively.

The Tapio decoupling index is a flexible value, as indicated
in Eq. (4). Specifically, the index represents the percent
change in agricultural carbon emissions when the agricultural
production changes by 1 %. To more accurately reflect the
decoupling relationship between agricultural carbon emis-
sions and agricultural economic growth, we partitioned the
decoupling relationship into three decoupling types and eight
decoupling states, as shown in Table 3 (Tapio 2005; Zhang
and Yang 2014; Luo et al. 2017). BStrong decoupling^

1 This paper argues that agricultural carbon emissions and agricultural eco-
nomic growth play equally important roles.

Table 1 Carbon emission sources, coefficients, and associated
references

Carbon sources Carbon emission
coefficient

Reference

Fertilizers 0.8956 kg C kg−1 West and Marland (2002)

Pesticides 4.9341 kg C kg−1 Zhi and Gao (2009)

Agricultural
plastic sheets

5.18 kg C kg−1 Tian et al. (2014a)

Diesel oil 0.5927 kg C kg−1 IPCC (2007)

Tillage 312.6 kg C hm−2 Wu et al. (2007)

Irrigation 20.476 kg C hm−2 Dubey and Lal (2009)

Environ Sci Pollut Res (2018) 25:25280–25293 25283
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indicates that the agricultural economy rapidly grows and ag-
ricultural carbon emissions rapidly decrease (t < 0). This rep-
resents an ideal state to achieve low-carbon agricultural eco-
nomic development. In contrast, Bstrong negative decoupling^
indicates that the agricultural economy rapidly decreases and
agricultural carbon emissions rapidly increase (t < 0). This
represents the most unfavorable state of agricultural economic
growth. The other states exist between these two extremes. In
particular, Bweak decoupling^ indicates that the agricultural
economy rapidly increases and agricultural carbon emissions
slowly increase (0 < t < 0.8). BRecessive decoupling^ indi-
cates that the agricultural economy slowly decreases and ag-
ricultural carbon emissions rapidly decrease (t > 1.2).
BExpansive negative decoupling^ indicates that the agricultur-
al economy slowly increases and agricultural carbon emis-
sions rapidly increase (t > 1.2). BWeak negative decoupling^
indicates that the agricultural economy rapidly decreases and
agricultural carbon emissions slowly decrease (0 < t < 0.8).
BExpansive coupling^ indicates that both the agricultural
economy and agricultural carbon emissions rapidly increase
(0 < t < 0.8). Lastly, Brecessive coupling^ indicates that both
the agricultural economy and agricultural carbon emissions
rapidly decrease (0 < t < 0.8).

LMDI decomposition model

To investigate the driving factors of agricultural carbon emis-
sions, we used the LMDI method based on the Kaya identity
to decompose agricultural carbon emissions. The Kaya iden-
tity was proposed by the Japanese scholar Yoichi Kaya (1989)
and is as follows:

Ew ¼ Ew

PEw
� PEw

Gw
� Gw

Pw
� Pw; ð5Þ

where Ew represents the amount of carbon dioxide emissions;
PEw represents the amount of energy consumption; Gw indi-
cates gross domestic product; and Pw indicates the total pop-
ulation. The Kaya identity establishes a link between carbon
emissions and energy with economic and demographic factors
that can be used to estimate the impact of the aforementioned
factors on carbon emissions. However, the Kaya identity can-
not factorize carbon emissions from non-energy use activities
such as land use, fertilizer and pesticide use, and rice cultiva-
tion (Yuan and Pan 2013). To remedy this shortcoming,
Raupach et al. (2007) modified the Kaya identity so that it
does not have to consider the energy factors, as follows:

Ew ¼ Ew

Gw
� Gw

Pw
� Pw; ð6Þ

The agricultural carbon emissions analyzed here are mainly
derived from non-energy use activities. Consequently, we
borrowed the construction ideas of formula (6) to decompose
the factors affecting agricultural carbon emissions as follows:

E ¼ E
G
� G

G
0 � G

0

P
� P ¼ EG� GG

0 � G
0
P � P; ð7Þ

where E represents the amount of agricultural carbon emis-
sions;G represents the agricultural output value;G' represents
the gross output value of agriculture, forestry, animal hus-
bandry, and fishery; and P represents the agricultural labor
amount2; EG ¼ E

G represents the intensity of agricultural car-
bon emissions, i.e., the amount of carbon emissions per unit of
agricultural production, and thus represents the technical

progress of agricultural factors; GG
0 ¼ G

G
0 is a ratio represent-

ing agricultural output value relative to the gross output value

2 The amount of agricultural labor is represented by the number of primary
industry employees.

Table 2 C emission coefficients of different rice varieties in different
provinces (kg hm−2)

Province Early season Late season In-season

Beijing 0 0 901.955

Tianjin 0 0 773.105

Hebei 0 0 1045.120

Shanxi 0 0 451.319

Inner Mongolia 0 0 608.803

Liaoning 0 0 629.937

Jilin 0 0 379.735

Heilongjiang 0 0 566.534

Shanghai 846.052 1874.813 3672.590

Jiangsu 1095.570 1881.630 3650.770

Zhejiang 979.675 2352.038 3951.420

Anhui 1141.930 1881.630 3493.290

Fujian 527.675 3586.005 2963.570

Jiangxi 1054.670 3122.415 4460.010

Shandong 0 0 1431.680

Henan 0 0 1216.920

Hubei 1193.740 2658.825 3965.740

Hunan 1002.850 2324.768 3836.890

Guangdong 1026.030 3517.830 3887.340

Guangxi 846.052 3347.393 3257.400

Hainan 915.590 3367.845 3564.870

Chongqing 446.546 1261.238 1754.140

Sichuan 446.546 1261.238 1754.140

Guizhou 347.693 1431.675 1503.260

Yunnan 162.257 518.130 494.269

Shaanxi 0 0 852.869

Gansu 0 0 465.635

Qinghai 0 0 0

Ningxia 0 0 501.086

Xinjiang 0 0 715.838

Source: Min and Hu (2012)
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of agriculture, forestry, animal husbandry, and fishery, and it

represents the agricultural industrial structure factor; G
0
P ¼

G
0

P is the production per unit of agricultural labor, and it rep-
resents the agricultural economic development scaling factor.
Lastly, P represents the agricultural population scaling factor.

The additive decomposition is superior to the multiplica-
tive decomposition in the LMDI method based on the decom-
position of driving factors of agricultural carbon emissions
(Chen and Shang 2014). Thus, we decomposed the driving
factors of emissions using the summed decomposition based
on Eq. (5). The changes in agricultural carbon emissions from
the base year (year 0) to the reporting period (year T) can be
expressed as follows (Zhang et al. 2016):

ΔE ¼ ET−E0 ¼ ΔEEG þΔEGG
0 þΔEG

0
P þΔEP; ð8Þ

whereΔE represents the total effect, i.e., the sum of the effects
from all driving factors of agricultural carbon emissions;
ΔEEG represents the agricultural technical progress effect
and reflects the effect of factors associated with progress in
agricultural technology on agricultural carbon emissions; Δ
EGG

0 represents the agricultural industrial structure effect and

reflects the effect of agricultural industrial structural factors on
agricultural carbon emissions; ΔEG

0
P represents the effect of

agricultural economic development scale and reflects the ef-
fects of the agricultural economic development scaling factors
on agricultural carbon emissions;ΔEP represents the effect of
agricultural population scale and reflects the effect of the ag-
ricultural population scaling factor on agricultural carbon
emissions.

The calculations for the right-hand side terms in Eq. (6)
follow that of Ang (2004) and Zhen et al. (2017b) and are as
follows.

ΔEEG ¼ ET−E0

ln ET
� �

−ln E0
� � � ln

EGT

EG0 ð9Þ

ΔEGG
0 ¼ ET−E0

ln ET
� �

−ln E0
� � � ln

GG
0T

GG
00 ð10Þ

ΔEG
0
P ¼

ET−E0

ln ET
� �

−ln E0
� � � ln

G
0
PT

G
0
P0 ð11Þ

ΔEP ¼ ET−E0

ln ET
� �

−ln E0
� � � ln

PT

P0 ð12Þ

Data sources

Considering the accessibility and quality of data, we investi-
gated panel data for 30 provinces (including province-level
municipalities) in mainland China from 1997 to 2015. Tibet
was not included due to missing data. Raw data were primar-
ily obtained from the China Statistical Yearbook, China Rural
Statistical Yearbook, China Agricultural Statistical Report,
and the China Agriculture Yearbook. The agricultural output
values, as well as the gross output values of agriculture, for-
estry, animal husbandry, and fishery, are calculated at constant
prices relative to 1997.

Results and discussion

Agricultural carbon emission calculations

We calculated the amount of agricultural carbon emissions
from 30 Chinese provinces in the period between 1997 and
2015 according to Eq. (1). For brevity, we only analyzed the
average annual agricultural carbon emissions and the average
annual growth rates for each province (Fig. 2).

The five provinces with the highest average annual agricul-
tural carbon emissions were Jiangsu (14,944,610 tons), Hunan
(14,248,350 tons), Anhui (13,112,860 tons), Hubei
(12,832,680 tons), and Henan (11,719,200 tons), whereas
the five provinces with the lowest emissions were Qinghai
(294,800 tons), Beijing (365,620 tons), Tianjin (541,510 tons),

Table 3 Classification and criteria of decoupling relationships between agricultural carbon emissions and agricultural economic growth

Decoupling type Decoupling state %ΔE %ΔG t Interpretation

Decoupling Strong decoupling <0 >0 t < 0 Agricultural economy ↑; agricultural carbon emissions ↓

Weak decoupling >0 >0 0 < t < 0.8 Agricultural economy ↑; agricultural carbon emissions ↗

Recessive decoupling <0 <0 t > 1.2 Agricultural economy ↘; agricultural carbon emissions ↓

Negative decoupling Expansive negative decoupling >0 >0 t > 1.2 Agricultural economy ↗; agricultural carbon emissions ↑

Strong negative decoupling >0 <0 t < 0 Agricultural economy ↓; agricultural carbon emissions ↑

Weak negative decoupling <0 <0 0 < t < 0.8 agricultural economy ↓; agricultural carbon emissions ↘

Coupling Expansive coupling >0 >0 0.8 < t < 1.2 Agricultural economy ↑; agricultural carbon emissions ↑

Recessive coupling <0 <0 0.8 < t < 1.2 Agricultural economy ↓; agricultural carbon emissions ↓

Sources: Tapio (2005), Zhang and Yang (2014), and Luo et al. (2017)

Notes: B↑^ rapid growth, B↓^ rapid decrease, B↗^ slow growth; B↘^ slow decrease

Environ Sci Pollut Res (2018) 25:25280–25293 25285
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Ningxia (841,290 tons), and Shanghai (957,590 tons; Fig. 2).
Thus, traditional agricultural provinces had higher average
annual agricultural carbon emissions. The average annual
growth rates of agricultural carbon emissions were all below
6%. The provinces with five highest average annual growth
rates were Xinjiang (5.016%), Inner Mongolia (3.772%), Jilin
(3.435%), Gansu (3.217%), and Ningxia (3.185%), whereas
the five provinces with the lowest annual growth rates were
Beijing (− 3.987%), Shanghai (− 2.362%), Zhejiang (−
1.320%), Fujian (− 0.720%), and Guangdong (− 0.604%),
which were all negative. Taken together, the results indicated
that progress was made towards agricultural carbon emission
reduction in these provinces.

Coupling effects of agricultural carbon emissions

Based on the coupling development degree model, we calcu-
lated the degree of coupling development between agricultural
carbon emissions and agricultural economic growth for all
provinces from 1997 to 2015. We analyzed the coupling ef-
fects of all provinces in two time periods (1997 and 2015) and
visualized the coupling effects in the ArcGIS software pack-
age (Fig. 3).

Several observations could be drawn from the analyses
presented in Fig. 3. First, the degree of coupling development
between agricultural carbon emissions and agricultural eco-
nomic growth were generally higher in the central region
and lower in the western region in both 1997 and 2015. The
average coupling development degrees in 1997 for the eastern,
central, and western regions were 0.551, 0.679, and 0.453,
respectively.3 The average coupling development degrees in
2015 for the eastern, central, and western regions were 0.530,

0.683, and 0.502, respectively. Thus, the degrees of coupling
development were the highest in the central region in 1997
and 2015 and lowest in the western region. The coupling
effects in all provinces exhibited four levels (minimal, low,
moderate, and high coupling) in either 1997 or 2015.
Second, the provinces exhibiting a minimal coupling state in
1997 included Beijing, Tianjin, Shanghai, Hainan, Qinghai,
and Ningxia, while provinces exhibiting a minimal coupling
state in 2015 were Beijing, Tianjin, Shanghai, Qinghai, and
Ningxia. The coupling effect of Hainan Province evolved
from a minimal coupling in 1997 to a low coupling effect in
2015. Third, provinces exhibiting a low coupling state in 1997
included Shanxi, Inner Mongolia, Liaoning, Jilin, Chongqing,
Guizhou, Shaanxi, Gansu, and Xinjiang. Four provinces,
Shanxi, Chongqing, Guizhou, and Gansu, still exhibited a
low coupling state in 2015. However, five provinces, Inner
Mongolia, Liaoning, Jilin, Shaanxi, and Xinjiang, evolved
from low coupling in 1997 to moderate coupling in 2015.
Fourth, provinces exhibiting a moderate coupling state in
1997 included Hebei, Heilongjiang, Zhejiang, Fujian,
Jiangxi, Guangxi, and Yunnan. All seven of these provinces
still exhibited a moderate coupling state in 2015. Fifth, prov-
inces exhibiting a high coupling state in 1997 included
Jiangsu, Anhui, Shandong, Henan, Hubei, Hunan,
Guangdong, and Sichuan. Three of these provinces, Jiangsu,
Shandong and Henan, still exhibited a high coupling state in
2015, whereas five provinces, Anhui, Hubei, Hunan,
Guangdong, and Sichuan, evolved into a moderate coupling
state in 2015.

Decoupling effects of agricultural carbon emissions

The degree of coupling development that was analyzed in the
previous section represents a static index. The metric reflects
only the coupling relationship between agricultural carbon
emissions and agricultural economic growth in different time
periods and cannot reflect the overall characteristics of the
coupling relationship within a certain period. Consequently,
we used a dynamic index, the Tapio decoupling index, to

3 Chinese provinces were divided into eastern, central, and western regions.
The eastern region included Beijing, Tianjin, Hebei, Liaoning, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan. The central
region included Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei,
and Hunan. The western region included Inner Mongolia, Guangxi,
Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia,
and Xinjiang.
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Fig. 2 Average annual
agricultural carbon emissions and
their average annual growth rate
for various provinces
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explore the characteristics of decoupling relationships over the
entire study period from multiple perspectives (Table 4).

The decoupling effects of agricultural carbon emissions in
all provinces from 1997 to 2015 comprised four types
(Table 4): strong, expansive, recessive, and weak decoupling.

First, agricultural carbon emissions in four provinces, Beijing,
Zhejiang, Fujian, and Guangdong, continuously declined with
agricultural economy growth. The decoupling effects exhibit-
ed in these provinces indicated that they were in a strong
decoupling state. These results thus showed that a sustainable
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development pattern was basically achieved in these prov-
inces with coordination between agricultural economic
growth and reduced environmental perturbation. The
decoupling degree was highest in Beijing and reached −

2.165. This result indicated that a resource-saving and envi-
ronmentally friendly agricultural development pattern was ini-
tiated in Beijing and was likely due to concentrated scientific
and technical resources in this province. Second, the
decoupling effect within Inner Mongolia was in an expansive
coupling state. This result indicated that local agricultural car-
bon emissions increased with the growth of the agricultural
economy, and they exhibited similar growth rates. Third, the
decoupling effect within Shanghai was in a recessive
decoupling state. This indicates that both agricultural carbon
emissions and the agricultural economy were in a negative
growth state, and the declining rate of agricultural carbon
emissions was higher than that of the agricultural economy.
Lastly, agricultural carbon emissions and the agricultural
economy increased in the same direction in the remaining 24
provinces. In addition, the growth rate of agricultural carbon
emissions was clearly lower than that of the agricultural econ-
omy. The relationship between the two measurements indicat-
ed a weak decoupling state. Thus, in the period comprising
1997 to 2015, 80% of the 30 provinces effectively controlled
excessive increases of agricultural carbon emissions while
maintaining rapid growth of the agricultural economy. This
result was achieved while agricultural carbon emissions con-
tinuously increased. Thus, a Bwin–win^ situation for agricul-
tural carbon emissions and agricultural economic growth was
not fully achieved in these areas.

To compare regional differences in the decoupling effects
of agricultural carbon emissions, we calculated the Tapio
decoupling index between agricultural carbon emissions and
agricultural economic growth across different regions of
China (Table 5).

During the periods encompassing 1997 to 2000, 2000 to
2003, 2006 to 2009, and 2012 to 2015, agricultural carbon
emissions continuously declined as the agricultural economy
in the eastern region grew (Table 5). Thus, the eastern region
was in a strong decoupling state over most of the time period
considered here. During all time periods, the central and west-
ern regions were in weak decoupling states, as both agricul-
tural carbon emissions and agricultural economies increased.
However, the growth rates of agricultural carbon emissions

Table 4 The decoupling effects of agricultural carbon emissions for
various provinces from 1997 to 2015

Province %ΔG %ΔE t

Beijing 0.240 − 0.519 − 2.165
Tianjin 0.374 0.245 0.656

Hebei 1.247 0.251 0.201

Shanxi 0.864 0.241 0.279

Inner Mongolia 1.170 0.947 0.809

Liaoning 1.437 0.354 0.246

Jilin 1.591 0.837 0.526

Heilongjiang 1.360 0.716 0.526

Shanghai − 0.035 − 0.350 9.907

Jiangsu 0.894 0.002 0.003

Zhejiang 0.491 − 0.213 − 0.433
Anhui 0.733 0.236 0.321

Fujian 0.988 − 0.122 − 0.123
Jiangxi 0.867 0.146 0.168

Shandong 1.076 0.153 0.142

Henan 1.402 0.574 0.409

Hubei 0.830 0.083 0.100

Hunan 0.951 0.220 0.231

Guangdong 1.006 − 0.103 − 0.103
Guangxi 1.455 0.074 0.051

Hainan 2.568 0.285 0.111

Chongqing 1.048 0.085 0.081

Sichuan 0.714 0.082 0.115

Guizhou 0.957 0.250 0.261

Yunnan 1.475 0.727 0.493

Shaanxi 1.793 0.430 0.240

Gansu 1.846 0.768 0.416

Qinghai 0.889 0.279 0.314

Ningxia 1.876 0.758 0.404

Xinjiang 2.025 1.413 0.698

Table 5 Regional differences in decoupling effects of agricultural carbon emissions

Year Eastern region Central region Western region

%ΔG %ΔE t %ΔG %ΔE t %ΔG %ΔE t

1997–2000 0.133 − 0.011 − 0.083 0.081 0.019 0.231 0.107 0.032 0.294

2000–2003 0.095 − 0.041 − 0.435 0.043 0.002 0.037 0.100 0.015 0.147

2003–2006 0.161 0.080 0.497 0.257 0.120 0.467 0.166 0.073 0.439

2006–2009 0.105 − 0.013 − 0.119 0.119 0.065 0.541 0.175 0.065 0.372

2009–2012 0.123 0.008 0.064 0.150 0.047 0.315 0.184 0.085 0.461

2012–2015 0.125 − 0.005 − 0.041 0.144 0.020 0.139 0.170 0.060 0.352
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were clearly lower than those of agricultural economies. In
contrast with the western region, the eastern region not only
exhibited sustained growth in the agricultural economy but
also focused on agro-environmental protection and effective
control of carbon emissions from agricultural production,
which likely occurred due to its advantages in resources, cli-
mate, and agricultural science and technology.

Driving factors of agricultural carbon emissions

Based on the agricultural carbon emissions of 30 provinces
from 1997 to 2015, we calculated the yearly quantitative
values of driving factors in all provinces using Eqs. (6)–(10).
The following two sub-sections discuss the driving factors of
agricultural carbon emissions from temporal and spatial
perspectives.

Temporal characteristics of driving factors of agricultural
carbon emissions

We derived the effects of driving factors of agricultural carbon
emissions at the national level from 1997 to 2015 by summing
the annual quantitative values of driving factors for all prov-
inces (Fig. 4).

Several observations can be drawn from the results
shown in Fig. 4. First, the effect of agricultural development
scale was the primary factor driving increases in agricultur-
al carbon emissions. The contributions of the agricultural
development scale to agricultural carbon emissions were
positive from 1997 to 2015. The contributions exceeded
10,000,000 tons after 2003 and reached a peak annual value
of 17,080,540 tons between 2003 and 2004. One explana-
tion for this result is that the grain yield in China increased
continuously over the previous 10-year period. Thus, the
scale of agricultural production increased continuously,
and considerable progress within the agricultural economy
was achieved. However, the rapid growth of the agricultural
economy was due to excessive use of chemical fertilizers
and pesticides. Thus, the agricultural environment

concomitantly exhibited continuous deterioration over this
time period. If agricultural development cannot evolve into
an intensive pattern, the effect of agricultural development
scale will continue to be the primary driving factor of agri-
cultural carbon emissions in the future. Therefore, assessing
how to achieve a ‘win–win’ situation for agricultural carbon
emissions and agricultural economic growth is an important
issue and challenge in the development of agriculture.
Second, the effect from technical progress of agriculture is
the primary driving factor reducing agricultural carbon
emissions. The effect of agricultural technical progress on
the reduction in agricultural carbon emissions was positive
from 1997 to 2015. The cumulative contribution to agricul-
tural carbon-reduction exceeded 90,000,000 tons, and the
contribution reached a peak value of 9,025,990 tons be-
tween 2014 and 2015. The results indicated that improve-
ment in agricultural mechanization and the widespread ap-
plication of clean agricultural technologies greatly in-
creased agricultural technical progress and facilitated agri-
cultural energy conservation and emissions reduction.
Third, the effect of agricultural industrial structure on agri-
cultural carbon emissions was not stable, but its cumulative
contribution was negative and reached − 17,465,720 tons.
The contribution from agricultural industrial structure
reached a peak value of 6,440,480 tons between 2002 and
2003. Lastly, the effects of agricultural population scale on
the reduction of agricultural carbon emissions were positive
in all but 2 years: from 1997 to 1998 and from 1998 to 1999.
The cumulative contribution of agricultural population
scale was 52,381,720 tons, which was less than that of the
effect from agricultural technical progress. One explanation
for this result is that as progress increases in industrializa-
tion and urbanization processes, a large number of farmers
migrate from rural areas to cities (i.e., from agricultural to
non-agricultural industries). The number of agricultural la-
bors continuously decreases, but the quality and agricultur-
al technological skills of agricultural labors continuously
improve. Thus, the energy conservation of agricultural en-
ergy is greatly improved.

Fig. 4 Temporal characteristics of
the factors driving agricultural
carbon emissions in China (unit:
10,000 tons of carbon equivalent
standard)
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Spatial characteristics of the driving factors of agricultural
carbon emissions

We derived the effects of the driving factors of agricultural
carbon emissions for every province by summing the annu-
al quantitative values of these driving factors over time
(Fig. 5).

The effect from agricultural development scale is the
primary driving factor related to increases in agricultural
carbon emissions (Fig. 5), and the contributions of this ef-
fect were positive in all provinces. The highest contribution
was observed in Jiangsu, while the lowest was observed
in Qinghai. The cumulative effect of the agricultural devel-
opment scale in Jiangsu was an increase of 22,092,520 tons
of carbon, while that of Qinghai was an increase of
277,300 tons. The effect from agricultural technical prog-
ress was the primary driving factor related to reduction of
agricultural carbon emissions. The contributions of the ef-
fect of agricultural technical progress were positive in all
provinces. The three highest contributions occurred in
the Jiangsu, Guangxi, and Guangdong provinces with cu-
mulative contributions towards reduction of agricultural
carbon emissions reaching 9,537,750, 7,788,640, and
7,701,960 tons, respectively. The effects of the agricultural
industrial structure and agricultural population scale on ag-
ricultural carbon emissions differed among provinces.
Adjustment of the agricultural industrial structure increased
agricultural carbon emissions in Gansu, Shanghai, Shanxi,
and Xinjiang but reduced emissions in the 26 other prov-
inces. The highest reduction of agricultural carbon emis-
sions occurred in the Sichuan province with a cumulative
reduction of 2,458,940 tons. Changes in the agricultural
population scales in Liaoning, Shanxi, Inner Mongolia,
Hainan, Heilongjiang, and Xinjiang resulted in increases
in agricultural carbon emissions, as opposed to reductions
in the 24 other provinces.

At the regional level, the effect of agricultural development
scale in the eastern, central, and western regions was the pri-
mary driving factor associated with increased agricultural car-
bon emissions. The highest contribution was observed in the
central region, while the lowest was observed in the western
region. The cumulative effect of the agricultural development
scale in the central region was an increase of 83,399,277 tons
of carbon, while that in the western region was an increase of
50,610,603 tons. The contributions of the effects from agri-
cultural technical progress, agricultural industrial structure,
and agricultural population scale, were positive in all regions
and associated with reduced agricultural carbon emissions. Of
these, the effect from agricultural technical progress was the
primary driving factor in the reduction of agricultural carbon
emissions. The contributions of the effect of agricultural tech-
nical progress in the reduction of agricultural carbon emis-
sions in the eastern, central, and western regions were
42,215,269, 33,923,336, and 23,139,957 tons, respectively.

Conclusions and policy implications

Conclusions

This study measured agricultural carbon emissions of 30
Chinese provinces from 1997 to 2015 and explored the cou-
pling and decoupling effects of agricultural carbon emissions
as well as the driving factors underlying emissions. The con-
clusions of this study are as follows:

(1) The degree of coupling development between agricultur-
al carbon emissions and agricultural economic growth
exhibited high levels in the central region, but low levels
in the western region in both 1997 and 2015. The cou-
pling effects of agricultural carbon emissions in all

Fig. 5 Spatial characteristics of
the factors driving agricultural
carbon emissions in China (unit:
10,000 tons of carbon equivalent
standard)
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provinces in 1997 and 2015 comprised four levels: min-
imal, low, moderate, and high coupling.

(2) The decoupling effects within all provinces from 1997 to
2015 comprised four types: strong decoupling, expan-
sive coupling, recessive decoupling, and weak decou-
pling. Specifically, the decoupling effects of agricultural
carbon emissions in Beijing, Zhejiang, Fujian, and
Guangdong indicated a strong decoupling state. The
decoupling effect in Inner Mongolia was in an expansive
coupling state, and that in Shanghai was in a recessive
decoupling state. The decoupling effects in the 24 other
provinces were all in weak decoupling states. The above
results indicate that most provinces have effectively con-
trolled excessive agricultural carbon emissions while
maintaining the growth of agricultural economies.
However, agricultural carbon emissions continue to in-
crease. Consequently, a Bwin–win^ situation for agricul-
tural carbon emission reduction and agricultural econom-
ic growth has not yet been fully achieved.

(3) The temporal characteristics of the driving factors of ag-
ricultural carbon emissions indicated that the contribu-
tions of the effects from agricultural development scale
to agricultural carbon emissions were positive between
1997 and 2015. The contribution reached a peak value of
17,080,540 tons in the year between 2003 and 2004. The
contributions of the effect of agricultural technical prog-
ress to agricultural carbon reduction were positive be-
tween 1997 and 2015, and the cumulative contribution
exceeded 90,000,000 tons. The contribution of the effect
of agricultural technical progress reached a peak value of
9,025,990 tons in the year between 2014 and 2015. The
contributions of the effect of agricultural industrial struc-
ture to agricultural carbon emissions were unstable, al-
though the cumulative contribution was negative (−
17,465,720 tons). The contributions of the effect of agri-
cultural population scale to the reduction of agricultural
carbon emissions were positive except in 2 years (1997
to 1998 and from 1998 to 1999), and the cumulative
contribution was 52,381,720 tons.

(4) Analysis of the spatial characteristics of the driving fac-
tors of agricultural carbon emissions indicated that the
effect of agricultural development scale was the primary
driving factor associated with increases in agricultural
carbon emissions. The contributions of the effect of ag-
ricultural development scale were positive in all prov-
inces from 1997 to 2015, while the contribution was
highest in Jiangsu and lowest in Qinghai. The contribu-
tions of the effect of agricultural technical progress to-
wards reduction of agricultural carbon emissions were
positive in all provinces from 1997 to 2015, while the
highest contributions were observed in Jiangsu,
Guangxi, and Guangdong. The contributions of the ef-
fects of agricultural industrial structure and agricultural

population scale to agricultural carbon emissions varied
among provinces.

Policy implications

(1) Our results indicate that the effect of agricultural devel-
opment scale is the largest factor that drove the increase
of agricultural carbon emissions. However, agricultural
economic growth should not be sacrificed in order to
reduce agricultural carbon emissions. China is a devel-
oping country, and as such, has always regarded devel-
opment as its top priority. Therefore, it is critical to prop-
erly balance the relationship between agricultural
growth, resource management, and environmental con-
cerns. Owing to the resources and environmental con-
straints, agricultural growth patterns are required to be
transformed and accelerated. The extensive growth
which pursues output and relies on energy consumption
should be replaced by sustainable intensive develop-
ment, focusing on quantity, quality, and efficiency. The
terminal aim is to build a resource-saving and eco-
friendly agricultural production system.

(2) Our results indicate that the effect of agricultural technical
progress is the main driver in the reduction of agricultural
carbon emissions. Therefore, it is necessary to increase the
investment in agricultural science and technology, and in
particular to vigorously develop techniques for soil testing
and fertilizer application, soil pollution control technolo-
gies, and precision in agricultural and ecological recycling
technologies. Moreover, we must improve the transforma-
tion of scientific and technological achievements in agri-
culture and the promotion of agricultural technology. In
particular, we must strengthen grassroots, public-sector
agricultural technology extension services, promote
household management to adopt advanced agricultural
science and technology practices, and guide farmers to
use advanced agricultural technologies and production
methods. By guiding farmers to use chemical fertilizers
and pesticides scientifically and rationally, we will
increase the utilization of chemical fertilizers and
pesticides and achieve the goal of zero growth in
chemical fertilizer and pesticide use.

Limitations of this paper

Geist and Lambin (2002) divided driving factors of carbon
emissions into proximate causes and underlying driving
forces. Driving factors of carbon emissions based on the
Kaya identity are generally proximate causes (Yuan and Pan
2013). The underlying driving forces are that the deep-seated
mechanisms that affect carbon emissions generally have a
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relatively rigorous and independent logical response mecha-
nism. Conversely, proximate causes have good observability,
are direct representations of human economic activities, and
often involve multiple underlying driving forces. This study
relied on the Kaya identity, along with four factors that repre-
sented agricultural carbon emissions, and these were all prox-
imate causes: agricultural technological progress, agricultural
industrial structure, agricultural economic development scal-
ing, and agricultural population scaling. There may be inter-
actions and mutual influences among these factors. In future
studies, new methods should be used to mine and analyze the
underlying driving forces that affect agricultural carbon
emissions.
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